
e n q u i r i e s @ w e l c m . u k     |     h t t p s : / / w e l c m . u k     |     + 4 4  ( 0 ) 1 2 5 2  9 5 0  6 5 0

LARAVEL COMMANDS CHEATSHEET

This will  create a folder within the folder you are currently in named “project-
name” and create all  the necessary Laravel project fi les here. Depending on 
how your environment is set up, you should be able to navigate 
to http://project-name.test in your browser and see the default Laravel 
welcome page.

D E S C R I P T I O N

laravel new project-name

 

C O M M A N D

This will  update your composer.json with the necessary details of the package 
you are choosing to install  and then install  the package in your project.

composer require vendor/package

This will  look for the newest versions of the packages you have installed and 
update them. You can manually update the Laravel version in your 
composer.json file and run this command to update your Laravel version, just 
make sure there aren’t any breaking changes between versions that need to be 
addressed.

composer update

This updates your vendor/composer/autoload_classmap.php file, you may 
need to run it if  you have a new class in your project that has not yet been 
loaded.

composer dump-autoload

Lists all  the artisan commands, run it and have a read!php artisan list

Displays some basic help, add --help or -h after any of these commands to see 
the help text with all  available flags and options.

php artisan --help OR -h

This generates a new key and adds it to your .env file. A key is automatically 
generated when you run laravel new project-name but the command can be 
useful when cloning an existing project. This app key is mainly used for 
encrypting cookies.

php artisan key:generate

Displays your current version of Laravelphp artisan --version OR -V

Puts your application into maintenance mode — visitors to the site will  see a 
maintenance message.

php artisan down

Brings your application back out of maintenance mode.php artisan up

Displays the current environment for your application.php artisan env

Lists all  the routes registered in your application.php artisan route:list

Runs a web server that will  be accessible locally, if  you do not specify a --host 
or a --port the site will  be accessed at your local ip on port 8000.

php artisan serve --

host=192.168.1.100 --port=80

Creates all  that is necessary for authentication in your application. Make sure 
you run php artisan migrate after this command(see below), then you can 
navigate to /register or /login on your project to create and log in to an 
account.

php artisan make:auth

Creates a model class and file in your project. You can use some, all  or none 
of the -mcr flags when creating a new model -m creates a migration, -c creates 
a controller and -r specifies that the controller is a resource controller. 
Run php artisan make:model -h to see the full  set of options.

php artisan make:model 

ModelName -mcr



Creates a controller fi le in your project.php artisan make:controller 

ControllerName

Creates a database migration file that you can edit to add necessary table 
properties.

php artisan make:migration --

table='table' 

'description_of_migration'

Runs any pending database migrations.php artisan migrate

Rolls back the latest database migration (ensuring you have the necessary 
commands in your down() function of the migration).

php artisan migrate:rollback

This example will  roll  back the last 5 migrations.php artisan migrate:rollback --

step=5

Rolls back all  migrations.php artisan migrate:reset

Displays a list of vendor packages installed in your project, giving you the 
option to specify which you would like to copy the configuration or view files 
to your own project’s folders for additional configuration or customisation.

php artisan vendor:publish

Speed up your application for production by combining all  your config options 
into a single fi le that loads quickly.

php artisan config:cache

Speed up your application for production caching all  your application’s 
routes.

php artisan route:cache

Clear the cached version of your routes — use this on local deployments if  you 
have cached routes. Re-run the cache command above on production to clear 
and re-cache routes.

php artisan route:clear

Clear your cached config — use this on local deployments if  you have cached 
config. Re-run the cache command above on production to clear and re-cache 
config.

php artisan config:clear


